Metamath Proof Explorer


Theorem leidd

Description: 'Less than or equal to' is reflexive. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis leidd.1 ( 𝜑𝐴 ∈ ℝ )
Assertion leidd ( 𝜑𝐴𝐴 )

Proof

Step Hyp Ref Expression
1 leidd.1 ( 𝜑𝐴 ∈ ℝ )
2 leid ( 𝐴 ∈ ℝ → 𝐴𝐴 )
3 1 2 syl ( 𝜑𝐴𝐴 )