Metamath Proof Explorer


Theorem leidi

Description: 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999)

Ref Expression
Hypothesis lt2.1 𝐴 ∈ ℝ
Assertion leidi 𝐴𝐴

Proof

Step Hyp Ref Expression
1 lt2.1 𝐴 ∈ ℝ
2 leid ( 𝐴 ∈ ℝ → 𝐴𝐴 )
3 1 2 ax-mp 𝐴𝐴