Step |
Hyp |
Ref |
Expression |
1 |
|
df-le |
⊢ ≤ = ( ( ℝ* × ℝ* ) ∖ ◡ < ) |
2 |
1
|
ineq1i |
⊢ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = ( ( ( ℝ* × ℝ* ) ∖ ◡ < ) ∩ ( 𝐴 × 𝐴 ) ) |
3 |
|
indif1 |
⊢ ( ( ( ℝ* × ℝ* ) ∖ ◡ < ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( ( ℝ* × ℝ* ) ∩ ( 𝐴 × 𝐴 ) ) ∖ ◡ < ) |
4 |
2 3
|
eqtri |
⊢ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = ( ( ( ℝ* × ℝ* ) ∩ ( 𝐴 × 𝐴 ) ) ∖ ◡ < ) |
5 |
|
xpss12 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐴 ⊆ ℝ* ) → ( 𝐴 × 𝐴 ) ⊆ ( ℝ* × ℝ* ) ) |
6 |
5
|
anidms |
⊢ ( 𝐴 ⊆ ℝ* → ( 𝐴 × 𝐴 ) ⊆ ( ℝ* × ℝ* ) ) |
7 |
|
sseqin2 |
⊢ ( ( 𝐴 × 𝐴 ) ⊆ ( ℝ* × ℝ* ) ↔ ( ( ℝ* × ℝ* ) ∩ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) ) |
8 |
6 7
|
sylib |
⊢ ( 𝐴 ⊆ ℝ* → ( ( ℝ* × ℝ* ) ∩ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) ) |
9 |
8
|
difeq1d |
⊢ ( 𝐴 ⊆ ℝ* → ( ( ( ℝ* × ℝ* ) ∩ ( 𝐴 × 𝐴 ) ) ∖ ◡ < ) = ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) ) |
10 |
4 9
|
eqtr2id |
⊢ ( 𝐴 ⊆ ℝ* → ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) = ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) |
11 |
|
isoeq2 |
⊢ ( ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) = ( ≤ ∩ ( 𝐴 × 𝐴 ) ) → ( 𝐹 Isom ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) , ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ( 𝐴 , 𝐵 ) ) ) |
12 |
10 11
|
syl |
⊢ ( 𝐴 ⊆ ℝ* → ( 𝐹 Isom ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) , ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ( 𝐴 , 𝐵 ) ) ) |
13 |
1
|
ineq1i |
⊢ ( ≤ ∩ ( 𝐵 × 𝐵 ) ) = ( ( ( ℝ* × ℝ* ) ∖ ◡ < ) ∩ ( 𝐵 × 𝐵 ) ) |
14 |
|
indif1 |
⊢ ( ( ( ℝ* × ℝ* ) ∖ ◡ < ) ∩ ( 𝐵 × 𝐵 ) ) = ( ( ( ℝ* × ℝ* ) ∩ ( 𝐵 × 𝐵 ) ) ∖ ◡ < ) |
15 |
13 14
|
eqtri |
⊢ ( ≤ ∩ ( 𝐵 × 𝐵 ) ) = ( ( ( ℝ* × ℝ* ) ∩ ( 𝐵 × 𝐵 ) ) ∖ ◡ < ) |
16 |
|
xpss12 |
⊢ ( ( 𝐵 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) → ( 𝐵 × 𝐵 ) ⊆ ( ℝ* × ℝ* ) ) |
17 |
16
|
anidms |
⊢ ( 𝐵 ⊆ ℝ* → ( 𝐵 × 𝐵 ) ⊆ ( ℝ* × ℝ* ) ) |
18 |
|
sseqin2 |
⊢ ( ( 𝐵 × 𝐵 ) ⊆ ( ℝ* × ℝ* ) ↔ ( ( ℝ* × ℝ* ) ∩ ( 𝐵 × 𝐵 ) ) = ( 𝐵 × 𝐵 ) ) |
19 |
17 18
|
sylib |
⊢ ( 𝐵 ⊆ ℝ* → ( ( ℝ* × ℝ* ) ∩ ( 𝐵 × 𝐵 ) ) = ( 𝐵 × 𝐵 ) ) |
20 |
19
|
difeq1d |
⊢ ( 𝐵 ⊆ ℝ* → ( ( ( ℝ* × ℝ* ) ∩ ( 𝐵 × 𝐵 ) ) ∖ ◡ < ) = ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ) |
21 |
15 20
|
eqtr2id |
⊢ ( 𝐵 ⊆ ℝ* → ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) = ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ) |
22 |
|
isoeq3 |
⊢ ( ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) = ( ≤ ∩ ( 𝐵 × 𝐵 ) ) → ( 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) ) ) |
23 |
21 22
|
syl |
⊢ ( 𝐵 ⊆ ℝ* → ( 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) ) ) |
24 |
12 23
|
sylan9bb |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) → ( 𝐹 Isom ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) , ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) ) ) |
25 |
|
isocnv2 |
⊢ ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ◡ < , ◡ < ( 𝐴 , 𝐵 ) ) |
26 |
|
eqid |
⊢ ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) = ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) |
27 |
|
eqid |
⊢ ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) = ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) |
28 |
26 27
|
isocnv3 |
⊢ ( 𝐹 Isom ◡ < , ◡ < ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) , ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ( 𝐴 , 𝐵 ) ) |
29 |
25 28
|
bitri |
⊢ ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) , ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ( 𝐴 , 𝐵 ) ) |
30 |
|
isores1 |
⊢ ( 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ≤ ( 𝐴 , 𝐵 ) ) |
31 |
|
isores2 |
⊢ ( 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ≤ ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) ) |
32 |
30 31
|
bitri |
⊢ ( 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) ) |
33 |
24 29 32
|
3bitr4g |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) → ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ) ) |