Step |
Hyp |
Ref |
Expression |
1 |
|
leiso |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) → ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ) ) |
2 |
1
|
biimpcd |
⊢ ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) → ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) → 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ) ) |
3 |
|
isorel |
⊢ ( ( 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 ≤ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ≤ ( 𝐹 ‘ 𝐷 ) ) ) |
4 |
3
|
ex |
⊢ ( 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) → ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( 𝐶 ≤ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ≤ ( 𝐹 ‘ 𝐷 ) ) ) ) |
5 |
2 4
|
syl6 |
⊢ ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) → ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) → ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( 𝐶 ≤ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ≤ ( 𝐹 ‘ 𝐷 ) ) ) ) ) |
6 |
5
|
3imp |
⊢ ( ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ∧ ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 ≤ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ≤ ( 𝐹 ‘ 𝐷 ) ) ) |