Description: An ortholattice is distributive in one ordering direction (join version). (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ledi.1 | ⊢ 𝐴 ∈ Cℋ | |
| ledi.2 | ⊢ 𝐵 ∈ Cℋ | ||
| ledi.3 | ⊢ 𝐶 ∈ Cℋ | ||
| Assertion | lejdiri | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ 𝐶 ) ⊆ ( ( 𝐴 ∨ℋ 𝐶 ) ∩ ( 𝐵 ∨ℋ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ledi.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | ledi.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | ledi.3 | ⊢ 𝐶 ∈ Cℋ | |
| 4 | 3 1 2 | lejdii | ⊢ ( 𝐶 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐶 ∨ℋ 𝐵 ) ) |
| 5 | 1 2 | chincli | ⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
| 6 | 5 3 | chjcomi | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ 𝐶 ) = ( 𝐶 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) |
| 7 | 1 3 | chjcomi | ⊢ ( 𝐴 ∨ℋ 𝐶 ) = ( 𝐶 ∨ℋ 𝐴 ) |
| 8 | 2 3 | chjcomi | ⊢ ( 𝐵 ∨ℋ 𝐶 ) = ( 𝐶 ∨ℋ 𝐵 ) |
| 9 | 7 8 | ineq12i | ⊢ ( ( 𝐴 ∨ℋ 𝐶 ) ∩ ( 𝐵 ∨ℋ 𝐶 ) ) = ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐶 ∨ℋ 𝐵 ) ) |
| 10 | 4 6 9 | 3sstr4i | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ 𝐶 ) ⊆ ( ( 𝐴 ∨ℋ 𝐶 ) ∩ ( 𝐵 ∨ℋ 𝐶 ) ) |