Metamath Proof Explorer


Theorem lejdiri

Description: An ortholattice is distributive in one ordering direction (join version). (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses ledi.1 𝐴C
ledi.2 𝐵C
ledi.3 𝐶C
Assertion lejdiri ( ( 𝐴𝐵 ) ∨ 𝐶 ) ⊆ ( ( 𝐴 𝐶 ) ∩ ( 𝐵 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ledi.1 𝐴C
2 ledi.2 𝐵C
3 ledi.3 𝐶C
4 3 1 2 lejdii ( 𝐶 ( 𝐴𝐵 ) ) ⊆ ( ( 𝐶 𝐴 ) ∩ ( 𝐶 𝐵 ) )
5 1 2 chincli ( 𝐴𝐵 ) ∈ C
6 5 3 chjcomi ( ( 𝐴𝐵 ) ∨ 𝐶 ) = ( 𝐶 ( 𝐴𝐵 ) )
7 1 3 chjcomi ( 𝐴 𝐶 ) = ( 𝐶 𝐴 )
8 2 3 chjcomi ( 𝐵 𝐶 ) = ( 𝐶 𝐵 )
9 7 8 ineq12i ( ( 𝐴 𝐶 ) ∩ ( 𝐵 𝐶 ) ) = ( ( 𝐶 𝐴 ) ∩ ( 𝐶 𝐵 ) )
10 4 6 9 3sstr4i ( ( 𝐴𝐵 ) ∨ 𝐶 ) ⊆ ( ( 𝐴 𝐶 ) ∩ ( 𝐵 𝐶 ) )