Metamath Proof Explorer
Description: A join's second argument is less than or equal to the join.
(Contributed by NM, 16-Sep-2011)
|
|
Ref |
Expression |
|
Hypotheses |
joinval2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
|
|
joinval2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
|
|
joinval2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
|
|
joinval2.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
|
|
joinval2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
joinval2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
|
joinlem.e |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) |
|
Assertion |
lejoin2 |
⊢ ( 𝜑 → 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
joinval2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
joinval2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
joinval2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
joinval2.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
5 |
|
joinval2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
joinval2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
joinlem.e |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) |
8 |
1 2 3 4 5 6 7
|
joinlem |
⊢ ( 𝜑 → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ∧ 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → ( 𝑋 ∨ 𝑌 ) ≤ 𝑧 ) ) ) |
9 |
8
|
simplrd |
⊢ ( 𝜑 → 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) |