Metamath Proof Explorer


Theorem lejoin2

Description: A join's second argument is less than or equal to the join. (Contributed by NM, 16-Sep-2011)

Ref Expression
Hypotheses joinval2.b 𝐵 = ( Base ‘ 𝐾 )
joinval2.l = ( le ‘ 𝐾 )
joinval2.j = ( join ‘ 𝐾 )
joinval2.k ( 𝜑𝐾𝑉 )
joinval2.x ( 𝜑𝑋𝐵 )
joinval2.y ( 𝜑𝑌𝐵 )
joinlem.e ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom )
Assertion lejoin2 ( 𝜑𝑌 ( 𝑋 𝑌 ) )

Proof

Step Hyp Ref Expression
1 joinval2.b 𝐵 = ( Base ‘ 𝐾 )
2 joinval2.l = ( le ‘ 𝐾 )
3 joinval2.j = ( join ‘ 𝐾 )
4 joinval2.k ( 𝜑𝐾𝑉 )
5 joinval2.x ( 𝜑𝑋𝐵 )
6 joinval2.y ( 𝜑𝑌𝐵 )
7 joinlem.e ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom )
8 1 2 3 4 5 6 7 joinlem ( 𝜑 → ( ( 𝑋 ( 𝑋 𝑌 ) ∧ 𝑌 ( 𝑋 𝑌 ) ) ∧ ∀ 𝑧𝐵 ( ( 𝑋 𝑧𝑌 𝑧 ) → ( 𝑋 𝑌 ) 𝑧 ) ) )
9 8 simplrd ( 𝜑𝑌 ( 𝑋 𝑌 ) )