Metamath Proof Explorer


Theorem leloei

Description: 'Less than or equal to' in terms of 'less than'. (Contributed by NM, 14-May-1999)

Ref Expression
Hypotheses lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
Assertion leloei ( 𝐴𝐵 ↔ ( 𝐴 < 𝐵𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 lt.1 𝐴 ∈ ℝ
2 lt.2 𝐵 ∈ ℝ
3 leloe ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵 ↔ ( 𝐴 < 𝐵𝐴 = 𝐵 ) ) )
4 1 2 3 mp2an ( 𝐴𝐵 ↔ ( 𝐴 < 𝐵𝐴 = 𝐵 ) )