Step |
Hyp |
Ref |
Expression |
1 |
|
ltleadd |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ( 𝐵 < 𝐷 ∧ 𝐴 ≤ 𝐶 ) → ( 𝐵 + 𝐴 ) < ( 𝐷 + 𝐶 ) ) ) |
2 |
1
|
ancomsd |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷 ) → ( 𝐵 + 𝐴 ) < ( 𝐷 + 𝐶 ) ) ) |
3 |
2
|
ancom2s |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷 ) → ( 𝐵 + 𝐴 ) < ( 𝐷 + 𝐶 ) ) ) |
4 |
3
|
ancom1s |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷 ) → ( 𝐵 + 𝐴 ) < ( 𝐷 + 𝐶 ) ) ) |
5 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
6 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
7 |
|
addcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
8 |
5 6 7
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
9 |
|
recn |
⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) |
10 |
|
recn |
⊢ ( 𝐷 ∈ ℝ → 𝐷 ∈ ℂ ) |
11 |
|
addcom |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) ) |
12 |
9 10 11
|
syl2an |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) ) |
13 |
8 12
|
breqan12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ↔ ( 𝐵 + 𝐴 ) < ( 𝐷 + 𝐶 ) ) ) |
14 |
4 13
|
sylibrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷 ) → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ) ) |