Description: Transitive law, weaker form of lelttr . (Contributed by AV, 14-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | leltletr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 ≤ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpb | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) | |
2 | lelttr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) | |
3 | ltle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐶 → 𝐴 ≤ 𝐶 ) ) | |
4 | 1 2 3 | sylsyld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 ≤ 𝐶 ) ) |