Metamath Proof Explorer


Theorem leltned

Description: 'Less than or equal to' implies 'less than' is not 'equals'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 ( 𝜑𝐴 ∈ ℝ )
ltd.2 ( 𝜑𝐵 ∈ ℝ )
leltned.3 ( 𝜑𝐴𝐵 )
Assertion leltned ( 𝜑 → ( 𝐴 < 𝐵𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 ltd.1 ( 𝜑𝐴 ∈ ℝ )
2 ltd.2 ( 𝜑𝐵 ∈ ℝ )
3 leltned.3 ( 𝜑𝐴𝐵 )
4 leltne ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → ( 𝐴 < 𝐵𝐵𝐴 ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐴 < 𝐵𝐵𝐴 ) )