Metamath Proof Explorer
Description: 'Less than or equal to' implies 'less than' is not 'equals'.
(Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
ltd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
ltd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
leltned.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
|
Assertion |
leltned |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ltd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ltd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
leltned.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
4 |
|
leltne |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴 ) ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴 ) ) |