Metamath Proof Explorer


Theorem lelttr

Description: Transitive law. (Contributed by NM, 23-May-1999)

Ref Expression
Assertion lelttr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐵𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) )

Proof

Step Hyp Ref Expression
1 leloe ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵 ↔ ( 𝐴 < 𝐵𝐴 = 𝐵 ) ) )
2 1 3adant3 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴𝐵 ↔ ( 𝐴 < 𝐵𝐴 = 𝐵 ) ) )
3 lttr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) )
4 3 expd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵 → ( 𝐵 < 𝐶𝐴 < 𝐶 ) ) )
5 breq1 ( 𝐴 = 𝐵 → ( 𝐴 < 𝐶𝐵 < 𝐶 ) )
6 5 biimprd ( 𝐴 = 𝐵 → ( 𝐵 < 𝐶𝐴 < 𝐶 ) )
7 6 a1i ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 = 𝐵 → ( 𝐵 < 𝐶𝐴 < 𝐶 ) ) )
8 4 7 jaod ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵𝐴 = 𝐵 ) → ( 𝐵 < 𝐶𝐴 < 𝐶 ) ) )
9 2 8 sylbid ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴𝐵 → ( 𝐵 < 𝐶𝐴 < 𝐶 ) ) )
10 9 impd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐵𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) )