Metamath Proof Explorer
		
		
		
		Description:  'Less than or equal to', 'less than' transitive law.  (Contributed by NM, 14-May-1999)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | lt.1 | ⊢ 𝐴  ∈  ℝ | 
					
						|  |  | lt.2 | ⊢ 𝐵  ∈  ℝ | 
					
						|  |  | lt.3 | ⊢ 𝐶  ∈  ℝ | 
				
					|  | Assertion | lelttri | ⊢  ( ( 𝐴  ≤  𝐵  ∧  𝐵  <  𝐶 )  →  𝐴  <  𝐶 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lt.1 | ⊢ 𝐴  ∈  ℝ | 
						
							| 2 |  | lt.2 | ⊢ 𝐵  ∈  ℝ | 
						
							| 3 |  | lt.3 | ⊢ 𝐶  ∈  ℝ | 
						
							| 4 |  | lelttr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐴  ≤  𝐵  ∧  𝐵  <  𝐶 )  →  𝐴  <  𝐶 ) ) | 
						
							| 5 | 1 2 3 4 | mp3an | ⊢ ( ( 𝐴  ≤  𝐵  ∧  𝐵  <  𝐶 )  →  𝐴  <  𝐶 ) |