Metamath Proof Explorer


Theorem lem1

Description: A number minus 1 is less than or equal to itself. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Assertion lem1 ( 𝐴 ∈ ℝ → ( 𝐴 − 1 ) ≤ 𝐴 )

Proof

Step Hyp Ref Expression
1 ltm1 ( 𝐴 ∈ ℝ → ( 𝐴 − 1 ) < 𝐴 )
2 peano2rem ( 𝐴 ∈ ℝ → ( 𝐴 − 1 ) ∈ ℝ )
3 ltle ( ( ( 𝐴 − 1 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐴 − 1 ) < 𝐴 → ( 𝐴 − 1 ) ≤ 𝐴 ) )
4 2 3 mpancom ( 𝐴 ∈ ℝ → ( ( 𝐴 − 1 ) < 𝐴 → ( 𝐴 − 1 ) ≤ 𝐴 ) )
5 1 4 mpd ( 𝐴 ∈ ℝ → ( 𝐴 − 1 ) ≤ 𝐴 )