Step |
Hyp |
Ref |
Expression |
1 |
|
max2 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ≤ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ≤ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ) |
3 |
2
|
adantr |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ∈ ℝ ) → 𝐵 ≤ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ) |
4 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
5 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
6 |
|
ifcl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ∈ ℝ ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ∈ ℝ ) → if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ∈ ℝ ) |
8 |
|
letr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ) → 𝐴 ≤ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ) ) |
9 |
4 5 7 8
|
syl3anc |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ) → 𝐴 ≤ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ) ) |
10 |
3 9
|
mpan2d |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → 𝐴 ≤ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ) ) |
11 |
10
|
3impia |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ) |