Metamath Proof Explorer


Theorem lemin

Description: Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by NM, 3-Aug-2007)

Ref Expression
Assertion lemin ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ if ( 𝐵𝐶 , 𝐵 , 𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 rexr ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* )
2 rexr ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* )
3 rexr ( 𝐶 ∈ ℝ → 𝐶 ∈ ℝ* )
4 xrlemin ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐴 ≤ if ( 𝐵𝐶 , 𝐵 , 𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) ) )
5 1 2 3 4 syl3an ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ if ( 𝐵𝐶 , 𝐵 , 𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) ) )