Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) ) → ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ) |
2 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
3 |
2
|
ad2antlr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) ) → 𝐶 ∈ ℝ ) |
4 |
|
simplrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) ) → 𝐷 ∈ ℝ ) |
5 |
|
0re |
⊢ 0 ∈ ℝ |
6 |
|
letr |
⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( 0 ≤ 𝐶 ∧ 𝐶 ≤ 𝐷 ) → 0 ≤ 𝐷 ) ) |
7 |
5 6
|
mp3an1 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( 0 ≤ 𝐶 ∧ 𝐶 ≤ 𝐷 ) → 0 ≤ 𝐷 ) ) |
8 |
7
|
exp4b |
⊢ ( 𝐶 ∈ ℝ → ( 𝐷 ∈ ℝ → ( 0 ≤ 𝐶 → ( 𝐶 ≤ 𝐷 → 0 ≤ 𝐷 ) ) ) ) |
9 |
8
|
com23 |
⊢ ( 𝐶 ∈ ℝ → ( 0 ≤ 𝐶 → ( 𝐷 ∈ ℝ → ( 𝐶 ≤ 𝐷 → 0 ≤ 𝐷 ) ) ) ) |
10 |
9
|
imp41 |
⊢ ( ( ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ∧ 𝐶 ≤ 𝐷 ) → 0 ≤ 𝐷 ) |
11 |
10
|
ad2ant2l |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) ) → 0 ≤ 𝐷 ) |
12 |
4 11
|
jca |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) ) → ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) |
13 |
1 3 12
|
jca32 |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) ) → ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) ) ) |
14 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) ) → ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) ) |
15 |
|
lemul12b |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) ) ) |
16 |
13 14 15
|
sylc |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) ) |
17 |
16
|
ex |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) ) ) |