Metamath Proof Explorer


Theorem lemul12ad

Description: Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses ltp1d.1 ( 𝜑𝐴 ∈ ℝ )
divgt0d.2 ( 𝜑𝐵 ∈ ℝ )
lemul1ad.3 ( 𝜑𝐶 ∈ ℝ )
ltmul12ad.3 ( 𝜑𝐷 ∈ ℝ )
lemul12ad.4 ( 𝜑 → 0 ≤ 𝐴 )
lemul12ad.5 ( 𝜑 → 0 ≤ 𝐶 )
lemul12ad.6 ( 𝜑𝐴𝐵 )
lemul12ad.7 ( 𝜑𝐶𝐷 )
Assertion lemul12ad ( 𝜑 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) )

Proof

Step Hyp Ref Expression
1 ltp1d.1 ( 𝜑𝐴 ∈ ℝ )
2 divgt0d.2 ( 𝜑𝐵 ∈ ℝ )
3 lemul1ad.3 ( 𝜑𝐶 ∈ ℝ )
4 ltmul12ad.3 ( 𝜑𝐷 ∈ ℝ )
5 lemul12ad.4 ( 𝜑 → 0 ≤ 𝐴 )
6 lemul12ad.5 ( 𝜑 → 0 ≤ 𝐶 )
7 lemul12ad.6 ( 𝜑𝐴𝐵 )
8 lemul12ad.7 ( 𝜑𝐶𝐷 )
9 1 5 jca ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) )
10 3 6 jca ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) )
11 lemul12a ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) ) )
12 9 2 10 4 11 syl22anc ( 𝜑 → ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) ) )
13 7 8 12 mp2and ( 𝜑 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) )