Step |
Hyp |
Ref |
Expression |
1 |
|
ltp1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
divgt0d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
lemul1ad.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
4 |
|
ltmul12ad.3 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
5 |
|
lemul12ad.4 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
6 |
|
lemul12ad.5 |
⊢ ( 𝜑 → 0 ≤ 𝐶 ) |
7 |
|
lemul12ad.6 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
8 |
|
lemul12ad.7 |
⊢ ( 𝜑 → 𝐶 ≤ 𝐷 ) |
9 |
1 5
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
10 |
3 6
|
jca |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) |
11 |
|
lemul12a |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) ) ) |
12 |
9 2 10 4 11
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) ) ) |
13 |
7 8 12
|
mp2and |
⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) ) |