| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0re |
⊢ 0 ∈ ℝ |
| 2 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 0 ≤ 𝐶 ↔ ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) ) |
| 3 |
1 2
|
mpan |
⊢ ( 𝐶 ∈ ℝ → ( 0 ≤ 𝐶 ↔ ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) ) |
| 4 |
3
|
pm5.32i |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ↔ ( 𝐶 ∈ ℝ ∧ ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) ) |
| 5 |
|
lemul1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) |
| 6 |
5
|
biimpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) |
| 7 |
6
|
3expia |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) ) |
| 8 |
7
|
com12 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) ) |
| 9 |
1
|
leidi |
⊢ 0 ≤ 0 |
| 10 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 11 |
10
|
mul01d |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 0 ) = 0 ) |
| 12 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
| 13 |
12
|
mul01d |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 · 0 ) = 0 ) |
| 14 |
11 13
|
breqan12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 · 0 ) ≤ ( 𝐵 · 0 ) ↔ 0 ≤ 0 ) ) |
| 15 |
9 14
|
mpbiri |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 0 ) ≤ ( 𝐵 · 0 ) ) |
| 16 |
|
oveq2 |
⊢ ( 0 = 𝐶 → ( 𝐴 · 0 ) = ( 𝐴 · 𝐶 ) ) |
| 17 |
|
oveq2 |
⊢ ( 0 = 𝐶 → ( 𝐵 · 0 ) = ( 𝐵 · 𝐶 ) ) |
| 18 |
16 17
|
breq12d |
⊢ ( 0 = 𝐶 → ( ( 𝐴 · 0 ) ≤ ( 𝐵 · 0 ) ↔ ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) |
| 19 |
15 18
|
imbitrid |
⊢ ( 0 = 𝐶 → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) |
| 20 |
19
|
a1dd |
⊢ ( 0 = 𝐶 → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 = 𝐶 ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) ) |
| 22 |
8 21
|
jaodan |
⊢ ( ( 𝐶 ∈ ℝ ∧ ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) ) |
| 23 |
4 22
|
sylbi |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) ) |
| 24 |
23
|
com12 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) ) |
| 25 |
24
|
3impia |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) |
| 26 |
25
|
imp |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) |