Metamath Proof Explorer
Description: Multiplication of both sides of 'less than or equal to' by a
nonnegative number. (Contributed by Mario Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
ltp1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
divgt0d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
lemul1ad.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
|
|
lemul1ad.4 |
⊢ ( 𝜑 → 0 ≤ 𝐶 ) |
|
|
lemul1ad.5 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
|
Assertion |
lemul2ad |
⊢ ( 𝜑 → ( 𝐶 · 𝐴 ) ≤ ( 𝐶 · 𝐵 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltp1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
divgt0d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
lemul1ad.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 4 |
|
lemul1ad.4 |
⊢ ( 𝜑 → 0 ≤ 𝐶 ) |
| 5 |
|
lemul1ad.5 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 6 |
3 4
|
jca |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) |
| 7 |
|
lemul2a |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐶 · 𝐴 ) ≤ ( 𝐶 · 𝐵 ) ) |
| 8 |
1 2 6 5 7
|
syl31anc |
⊢ ( 𝜑 → ( 𝐶 · 𝐴 ) ≤ ( 𝐶 · 𝐵 ) ) |