Step |
Hyp |
Ref |
Expression |
1 |
|
ltdivmul2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐵 / 𝐶 ) < 𝐴 ↔ 𝐵 < ( 𝐴 · 𝐶 ) ) ) |
2 |
1
|
3com12 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐵 / 𝐶 ) < 𝐴 ↔ 𝐵 < ( 𝐴 · 𝐶 ) ) ) |
3 |
2
|
notbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ¬ ( 𝐵 / 𝐶 ) < 𝐴 ↔ ¬ 𝐵 < ( 𝐴 · 𝐶 ) ) ) |
4 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → 𝐴 ∈ ℝ ) |
5 |
|
gt0ne0 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → 𝐶 ≠ 0 ) |
6 |
5
|
3adant1 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → 𝐶 ≠ 0 ) |
7 |
|
redivcl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) → ( 𝐵 / 𝐶 ) ∈ ℝ ) |
8 |
6 7
|
syld3an3 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → ( 𝐵 / 𝐶 ) ∈ ℝ ) |
9 |
8
|
3expb |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐵 / 𝐶 ) ∈ ℝ ) |
10 |
9
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐵 / 𝐶 ) ∈ ℝ ) |
11 |
4 10
|
lenltd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 ≤ ( 𝐵 / 𝐶 ) ↔ ¬ ( 𝐵 / 𝐶 ) < 𝐴 ) ) |
12 |
|
remulcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 · 𝐶 ) ∈ ℝ ) |
13 |
12
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 · 𝐶 ) ∈ ℝ ) |
14 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
15 |
13 14
|
lenltd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 · 𝐶 ) ≤ 𝐵 ↔ ¬ 𝐵 < ( 𝐴 · 𝐶 ) ) ) |
16 |
15
|
3adant3r |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 · 𝐶 ) ≤ 𝐵 ↔ ¬ 𝐵 < ( 𝐴 · 𝐶 ) ) ) |
17 |
3 11 16
|
3bitr4rd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 · 𝐶 ) ≤ 𝐵 ↔ 𝐴 ≤ ( 𝐵 / 𝐶 ) ) ) |