Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1rid |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 ) |
2 |
1
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → ( 𝐴 · 1 ) = 𝐴 ) |
3 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ ) |
4 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → 0 ≤ 𝐴 ) |
5 |
3 4
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
6 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ ) |
7 |
|
1re |
⊢ 1 ∈ ℝ |
8 |
|
0le1 |
⊢ 0 ≤ 1 |
9 |
7 8
|
pm3.2i |
⊢ ( 1 ∈ ℝ ∧ 0 ≤ 1 ) |
10 |
6 9
|
jctil |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ 𝐵 ∈ ℝ ) ) |
11 |
5 3 10
|
jca31 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐴 ∈ ℝ ) ∧ ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ 𝐵 ∈ ℝ ) ) ) |
12 |
|
leid |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ 𝐴 ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → 𝐴 ≤ 𝐴 ) |
14 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → 1 ≤ 𝐵 ) |
15 |
13 14
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → ( 𝐴 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) |
16 |
|
lemul12a |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐴 ∈ ℝ ) ∧ ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ 𝐵 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) → ( 𝐴 · 1 ) ≤ ( 𝐴 · 𝐵 ) ) ) |
17 |
11 15 16
|
sylc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → ( 𝐴 · 1 ) ≤ ( 𝐴 · 𝐵 ) ) |
18 |
2 17
|
eqbrtrrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → 𝐴 ≤ ( 𝐴 · 𝐵 ) ) |