Metamath Proof Explorer
Description: Multiplication by a number greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
ltp1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
divgt0d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
lemulge11d.3 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
|
|
lemulge11d.4 |
⊢ ( 𝜑 → 1 ≤ 𝐵 ) |
|
Assertion |
lemulge12d |
⊢ ( 𝜑 → 𝐴 ≤ ( 𝐵 · 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ltp1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
divgt0d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
lemulge11d.3 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
4 |
|
lemulge11d.4 |
⊢ ( 𝜑 → 1 ≤ 𝐵 ) |
5 |
|
lemulge12 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → 𝐴 ≤ ( 𝐵 · 𝐴 ) ) |
6 |
1 2 3 4 5
|
syl22anc |
⊢ ( 𝜑 → 𝐴 ≤ ( 𝐵 · 𝐴 ) ) |