| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 2 |  | wrdf | ⊢ ( 𝑊  ∈  Word  𝐴  →  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) | 
						
							| 4 |  | fco | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 )  →  ( 𝐹  ∘  𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ) | 
						
							| 5 | 1 3 4 | syl2anc | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ) | 
						
							| 6 |  | ffn | ⊢ ( ( 𝐹  ∘  𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵  →  ( 𝐹  ∘  𝑊 )  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 7 |  | hashfn | ⊢ ( ( 𝐹  ∘  𝑊 )  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ ( 𝐹  ∘  𝑊 ) )  =  ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 8 | 5 6 7 | 3syl | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( ♯ ‘ ( 𝐹  ∘  𝑊 ) )  =  ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 9 |  | ffn | ⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴  →  𝑊  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 10 |  | hashfn | ⊢ ( 𝑊  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 11 | 3 9 10 | 3syl | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 12 | 8 11 | eqtr4d | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( ♯ ‘ ( 𝐹  ∘  𝑊 ) )  =  ( ♯ ‘ 𝑊 ) ) |