Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
wrdf |
⊢ ( 𝑊 ∈ Word 𝐴 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |
3 |
2
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |
4 |
|
fco |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) → ( 𝐹 ∘ 𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ) |
5 |
1 3 4
|
syl2anc |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ) |
6 |
|
ffn |
⊢ ( ( 𝐹 ∘ 𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 → ( 𝐹 ∘ 𝑊 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
7 |
|
hashfn |
⊢ ( ( 𝐹 ∘ 𝑊 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
8 |
5 6 7
|
3syl |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
9 |
|
ffn |
⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
10 |
|
hashfn |
⊢ ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
11 |
3 9 10
|
3syl |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
12 |
8 11
|
eqtr4d |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |