Metamath Proof Explorer


Theorem leneg2d

Description: Negative of one side of 'less than or equal to'. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses leneg2d.1 ( 𝜑𝐴 ∈ ℝ )
leneg2d.2 ( 𝜑𝐵 ∈ ℝ )
Assertion leneg2d ( 𝜑 → ( 𝐴 ≤ - 𝐵𝐵 ≤ - 𝐴 ) )

Proof

Step Hyp Ref Expression
1 leneg2d.1 ( 𝜑𝐴 ∈ ℝ )
2 leneg2d.2 ( 𝜑𝐵 ∈ ℝ )
3 2 renegcld ( 𝜑 → - 𝐵 ∈ ℝ )
4 1 3 lenegd ( 𝜑 → ( 𝐴 ≤ - 𝐵 ↔ - - 𝐵 ≤ - 𝐴 ) )
5 2 recnd ( 𝜑𝐵 ∈ ℂ )
6 5 negnegd ( 𝜑 → - - 𝐵 = 𝐵 )
7 6 breq1d ( 𝜑 → ( - - 𝐵 ≤ - 𝐴𝐵 ≤ - 𝐴 ) )
8 4 7 bitrd ( 𝜑 → ( 𝐴 ≤ - 𝐵𝐵 ≤ - 𝐴 ) )