Metamath Proof Explorer


Theorem leneg3d

Description: Negative of one side of 'less than or equal to'. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses leneg3d.1 ( 𝜑𝐴 ∈ ℝ )
leneg3d.2 ( 𝜑𝐵 ∈ ℝ )
Assertion leneg3d ( 𝜑 → ( - 𝐴𝐵 ↔ - 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 leneg3d.1 ( 𝜑𝐴 ∈ ℝ )
2 leneg3d.2 ( 𝜑𝐵 ∈ ℝ )
3 1 renegcld ( 𝜑 → - 𝐴 ∈ ℝ )
4 3 2 lenegd ( 𝜑 → ( - 𝐴𝐵 ↔ - 𝐵 ≤ - - 𝐴 ) )
5 1 recnd ( 𝜑𝐴 ∈ ℂ )
6 5 negnegd ( 𝜑 → - - 𝐴 = 𝐴 )
7 6 breq2d ( 𝜑 → ( - 𝐵 ≤ - - 𝐴 ↔ - 𝐵𝐴 ) )
8 4 7 bitrd ( 𝜑 → ( - 𝐴𝐵 ↔ - 𝐵𝐴 ) )