Description: Contraposition of negative in 'less than or equal to'. (Contributed by NM, 10-May-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | lenegcon1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐴 ≤ 𝐵 ↔ - 𝐵 ≤ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
2 | leneg | ⊢ ( ( - 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐴 ≤ 𝐵 ↔ - 𝐵 ≤ - - 𝐴 ) ) | |
3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐴 ≤ 𝐵 ↔ - 𝐵 ≤ - - 𝐴 ) ) |
4 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
5 | 4 | negnegd | ⊢ ( 𝐴 ∈ ℝ → - - 𝐴 = 𝐴 ) |
6 | 5 | breq2d | ⊢ ( 𝐴 ∈ ℝ → ( - 𝐵 ≤ - - 𝐴 ↔ - 𝐵 ≤ 𝐴 ) ) |
7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐵 ≤ - - 𝐴 ↔ - 𝐵 ≤ 𝐴 ) ) |
8 | 3 7 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐴 ≤ 𝐵 ↔ - 𝐵 ≤ 𝐴 ) ) |