Metamath Proof Explorer


Theorem lenegcon1

Description: Contraposition of negative in 'less than or equal to'. (Contributed by NM, 10-May-2004)

Ref Expression
Assertion lenegcon1 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐴𝐵 ↔ - 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 renegcl ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ )
2 leneg ( ( - 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐴𝐵 ↔ - 𝐵 ≤ - - 𝐴 ) )
3 1 2 sylan ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐴𝐵 ↔ - 𝐵 ≤ - - 𝐴 ) )
4 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
5 4 negnegd ( 𝐴 ∈ ℝ → - - 𝐴 = 𝐴 )
6 5 breq2d ( 𝐴 ∈ ℝ → ( - 𝐵 ≤ - - 𝐴 ↔ - 𝐵𝐴 ) )
7 6 adantr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐵 ≤ - - 𝐴 ↔ - 𝐵𝐴 ) )
8 3 7 bitrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐴𝐵 ↔ - 𝐵𝐴 ) )