Metamath Proof Explorer


Theorem lenegcon1i

Description: Contraposition of negative in 'less than or equal to'. (Contributed by NM, 6-Apr-2005)

Ref Expression
Hypotheses lt2.1 𝐴 ∈ ℝ
lt2.2 𝐵 ∈ ℝ
Assertion lenegcon1i ( - 𝐴𝐵 ↔ - 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 lt2.1 𝐴 ∈ ℝ
2 lt2.2 𝐵 ∈ ℝ
3 lenegcon1 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐴𝐵 ↔ - 𝐵𝐴 ) )
4 1 2 3 mp2an ( - 𝐴𝐵 ↔ - 𝐵𝐴 )