Metamath Proof Explorer


Theorem lenegcon2

Description: Contraposition of negative in 'less than or equal to'. (Contributed by NM, 8-Oct-2005)

Ref Expression
Assertion lenegcon2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ - 𝐵𝐵 ≤ - 𝐴 ) )

Proof

Step Hyp Ref Expression
1 renegcl ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ )
2 leneg ( ( 𝐴 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) → ( 𝐴 ≤ - 𝐵 ↔ - - 𝐵 ≤ - 𝐴 ) )
3 1 2 sylan2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ - 𝐵 ↔ - - 𝐵 ≤ - 𝐴 ) )
4 recn ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ )
5 4 negnegd ( 𝐵 ∈ ℝ → - - 𝐵 = 𝐵 )
6 5 adantl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → - - 𝐵 = 𝐵 )
7 6 breq1d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - - 𝐵 ≤ - 𝐴𝐵 ≤ - 𝐴 ) )
8 3 7 bitrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ - 𝐵𝐵 ≤ - 𝐴 ) )