Metamath Proof Explorer
Description: Contraposition of negative in 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
ltnegd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
lenegcon2d.3 |
⊢ ( 𝜑 → 𝐴 ≤ - 𝐵 ) |
|
Assertion |
lenegcon2d |
⊢ ( 𝜑 → 𝐵 ≤ - 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ltnegd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
lenegcon2d.3 |
⊢ ( 𝜑 → 𝐴 ≤ - 𝐵 ) |
4 |
|
lenegcon2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ - 𝐵 ↔ 𝐵 ≤ - 𝐴 ) ) |
5 |
1 2 4
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ≤ - 𝐵 ↔ 𝐵 ≤ - 𝐴 ) ) |
6 |
3 5
|
mpbid |
⊢ ( 𝜑 → 𝐵 ≤ - 𝐴 ) |