Metamath Proof Explorer


Theorem lenegi

Description: Negative of both sides of 'less than or equal to'. (Contributed by NM, 1-Aug-1999)

Ref Expression
Hypotheses lt2.1 𝐴 ∈ ℝ
lt2.2 𝐵 ∈ ℝ
Assertion lenegi ( 𝐴𝐵 ↔ - 𝐵 ≤ - 𝐴 )

Proof

Step Hyp Ref Expression
1 lt2.1 𝐴 ∈ ℝ
2 lt2.2 𝐵 ∈ ℝ
3 leneg ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵 ↔ - 𝐵 ≤ - 𝐴 ) )
4 1 2 3 mp2an ( 𝐴𝐵 ↔ - 𝐵 ≤ - 𝐴 )