Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
2 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
3 |
|
absge0 |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) |
4 |
2 3
|
jca |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) |
5 |
1 4
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) |
6 |
|
le2sq |
⊢ ( ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( abs ‘ 𝐴 ) ≤ 𝐵 ↔ ( ( abs ‘ 𝐴 ) ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |
7 |
5 6
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( abs ‘ 𝐴 ) ≤ 𝐵 ↔ ( ( abs ‘ 𝐴 ) ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |
8 |
|
absle |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) ≤ 𝐵 ↔ ( - 𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) |
9 |
|
lenegcon1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐴 ≤ 𝐵 ↔ - 𝐵 ≤ 𝐴 ) ) |
10 |
9
|
anbi1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( - 𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵 ) ↔ ( - 𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) |
11 |
|
ancom |
⊢ ( ( - 𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵 ) ↔ ( 𝐴 ≤ 𝐵 ∧ - 𝐴 ≤ 𝐵 ) ) |
12 |
10 11
|
bitr3di |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( - 𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ↔ ( 𝐴 ≤ 𝐵 ∧ - 𝐴 ≤ 𝐵 ) ) ) |
13 |
8 12
|
bitrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) ≤ 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ - 𝐴 ≤ 𝐵 ) ) ) |
14 |
13
|
adantrr |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( abs ‘ 𝐴 ) ≤ 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ - 𝐴 ≤ 𝐵 ) ) ) |
15 |
|
absresq |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
16 |
15
|
breq1d |
⊢ ( 𝐴 ∈ ℝ → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |
18 |
7 14 17
|
3bitr3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 ≤ 𝐵 ∧ - 𝐴 ≤ 𝐵 ) ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |
19 |
18
|
3impb |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 ≤ 𝐵 ∧ - 𝐴 ≤ 𝐵 ) ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |