Metamath Proof Explorer


Theorem lenelioc

Description: A real number smaller than or equal to the lower bound of a left-open right-closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses lenelioc.1 ( 𝜑𝐴 ∈ ℝ* )
lenelioc.2 ( 𝜑𝐵 ∈ ℝ* )
lenelioc.3 ( 𝜑𝐶 ∈ ℝ* )
lenelioc.4 ( 𝜑𝐶𝐴 )
Assertion lenelioc ( 𝜑 → ¬ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) )

Proof

Step Hyp Ref Expression
1 lenelioc.1 ( 𝜑𝐴 ∈ ℝ* )
2 lenelioc.2 ( 𝜑𝐵 ∈ ℝ* )
3 lenelioc.3 ( 𝜑𝐶 ∈ ℝ* )
4 lenelioc.4 ( 𝜑𝐶𝐴 )
5 3 1 xrlenltd ( 𝜑 → ( 𝐶𝐴 ↔ ¬ 𝐴 < 𝐶 ) )
6 4 5 mpbid ( 𝜑 → ¬ 𝐴 < 𝐶 )
7 6 intn3an2d ( 𝜑 → ¬ ( 𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵 ) )
8 elioc1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵 ) ) )
9 1 2 8 syl2anc ( 𝜑 → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵 ) ) )
10 7 9 mtbird ( 𝜑 → ¬ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) )