Metamath Proof Explorer
Description: 'Less than or equal to' and 'not equals' implies 'less than'.
(Contributed by Glauco Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
ltd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
ltd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
leltned.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
|
|
leneltd.4 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
|
Assertion |
leneltd |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ltd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ltd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
leltned.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
4 |
|
leneltd.4 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
5 |
1 2 3
|
leltned |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴 ) ) |
6 |
4 5
|
mpbird |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |