Metamath Proof Explorer


Theorem leneltd

Description: 'Less than or equal to' and 'not equals' implies 'less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ltd.1 ( 𝜑𝐴 ∈ ℝ )
ltd.2 ( 𝜑𝐵 ∈ ℝ )
leltned.3 ( 𝜑𝐴𝐵 )
leneltd.4 ( 𝜑𝐵𝐴 )
Assertion leneltd ( 𝜑𝐴 < 𝐵 )

Proof

Step Hyp Ref Expression
1 ltd.1 ( 𝜑𝐴 ∈ ℝ )
2 ltd.2 ( 𝜑𝐵 ∈ ℝ )
3 leltned.3 ( 𝜑𝐴𝐵 )
4 leneltd.4 ( 𝜑𝐵𝐴 )
5 1 2 3 leltned ( 𝜑 → ( 𝐴 < 𝐵𝐵𝐴 ) )
6 4 5 mpbird ( 𝜑𝐴 < 𝐵 )