Metamath Proof Explorer


Theorem lennncl

Description: The length of a nonempty word is a positive integer. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Assertion lennncl ( ( 𝑊 ∈ Word 𝑆𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 wrdfin ( 𝑊 ∈ Word 𝑆𝑊 ∈ Fin )
2 hashnncl ( 𝑊 ∈ Fin → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ 𝑊 ≠ ∅ ) )
3 1 2 syl ( 𝑊 ∈ Word 𝑆 → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ 𝑊 ≠ ∅ ) )
4 3 biimpar ( ( 𝑊 ∈ Word 𝑆𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ )