Database
REAL AND COMPLEX NUMBERS
Words over a set
Subwords and concatenations
lenpfxcctswrd
Metamath Proof Explorer
Description: The length of the concatenation of the prefix of a word and the rest of
the word is the length of the word. (Contributed by AV , 21-Oct-2018)
(Revised by AV , 9-May-2020)
Ref
Expression
Assertion
lenpfxcctswrd
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( ( 𝑊 prefix 𝑀 ) ++ ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( ♯ ‘ 𝑊 ) )
Proof
Step
Hyp
Ref
Expression
1
pfxcctswrd
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 prefix 𝑀 ) ++ ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ) = 𝑊 )
2
1
fveq2d
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( ( 𝑊 prefix 𝑀 ) ++ ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( ♯ ‘ 𝑊 ) )