| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swrdcl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝑉 ) |
| 2 |
|
pfxcl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝑀 ) ∈ Word 𝑉 ) |
| 3 |
|
ccatlen |
⊢ ( ( ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝑉 ∧ ( 𝑊 prefix 𝑀 ) ∈ Word 𝑉 ) → ( ♯ ‘ ( ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix 𝑀 ) ) ) = ( ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ) + ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) ) ) |
| 4 |
1 2 3
|
syl2anc |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ ( ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix 𝑀 ) ) ) = ( ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ) + ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) ) ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix 𝑀 ) ) ) = ( ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ) + ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) ) ) |
| 6 |
|
addlenrevpfx |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ) + ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) ) = ( ♯ ‘ 𝑊 ) ) |
| 7 |
5 6
|
eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix 𝑀 ) ) ) = ( ♯ ‘ 𝑊 ) ) |