Metamath Proof Explorer
Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
ltd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
ltd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
lensymd.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
|
Assertion |
lensymd |
⊢ ( 𝜑 → ¬ 𝐵 < 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ltd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ltd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
lensymd.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
4 |
1 2
|
lenltd |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
5 |
3 4
|
mpbid |
⊢ ( 𝜑 → ¬ 𝐵 < 𝐴 ) |