| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							leordtval.1 | 
							⊢ 𝐴  =  ran  ( 𝑥  ∈  ℝ*  ↦  ( 𝑥 (,] +∞ ) )  | 
						
						
							| 2 | 
							
								
							 | 
							leordtval.2 | 
							⊢ 𝐵  =  ran  ( 𝑥  ∈  ℝ*  ↦  ( -∞ [,) 𝑥 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							leordtval.3 | 
							⊢ 𝐶  =  ran  (,)  | 
						
						
							| 4 | 
							
								1 2
							 | 
							leordtval2 | 
							⊢ ( ordTop ‘  ≤  )  =  ( topGen ‘ ( fi ‘ ( 𝐴  ∪  𝐵 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							letsr | 
							⊢  ≤   ∈   TosetRel   | 
						
						
							| 6 | 
							
								
							 | 
							ledm | 
							⊢ ℝ*  =  dom   ≤   | 
						
						
							| 7 | 
							
								1
							 | 
							leordtvallem1 | 
							⊢ 𝐴  =  ran  ( 𝑥  ∈  ℝ*  ↦  { 𝑦  ∈  ℝ*  ∣  ¬  𝑦  ≤  𝑥 } )  | 
						
						
							| 8 | 
							
								1 2
							 | 
							leordtvallem2 | 
							⊢ 𝐵  =  ran  ( 𝑥  ∈  ℝ*  ↦  { 𝑦  ∈  ℝ*  ∣  ¬  𝑥  ≤  𝑦 } )  | 
						
						
							| 9 | 
							
								
							 | 
							df-ioo | 
							⊢ (,)  =  ( 𝑎  ∈  ℝ* ,  𝑏  ∈  ℝ*  ↦  { 𝑦  ∈  ℝ*  ∣  ( 𝑎  <  𝑦  ∧  𝑦  <  𝑏 ) } )  | 
						
						
							| 10 | 
							
								
							 | 
							xrltnle | 
							⊢ ( ( 𝑎  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  →  ( 𝑎  <  𝑦  ↔  ¬  𝑦  ≤  𝑎 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantlr | 
							⊢ ( ( ( 𝑎  ∈  ℝ*  ∧  𝑏  ∈  ℝ* )  ∧  𝑦  ∈  ℝ* )  →  ( 𝑎  <  𝑦  ↔  ¬  𝑦  ≤  𝑎 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							xrltnle | 
							⊢ ( ( 𝑦  ∈  ℝ*  ∧  𝑏  ∈  ℝ* )  →  ( 𝑦  <  𝑏  ↔  ¬  𝑏  ≤  𝑦 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							ancoms | 
							⊢ ( ( 𝑏  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  →  ( 𝑦  <  𝑏  ↔  ¬  𝑏  ≤  𝑦 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantll | 
							⊢ ( ( ( 𝑎  ∈  ℝ*  ∧  𝑏  ∈  ℝ* )  ∧  𝑦  ∈  ℝ* )  →  ( 𝑦  <  𝑏  ↔  ¬  𝑏  ≤  𝑦 ) )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							anbi12d | 
							⊢ ( ( ( 𝑎  ∈  ℝ*  ∧  𝑏  ∈  ℝ* )  ∧  𝑦  ∈  ℝ* )  →  ( ( 𝑎  <  𝑦  ∧  𝑦  <  𝑏 )  ↔  ( ¬  𝑦  ≤  𝑎  ∧  ¬  𝑏  ≤  𝑦 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							rabbidva | 
							⊢ ( ( 𝑎  ∈  ℝ*  ∧  𝑏  ∈  ℝ* )  →  { 𝑦  ∈  ℝ*  ∣  ( 𝑎  <  𝑦  ∧  𝑦  <  𝑏 ) }  =  { 𝑦  ∈  ℝ*  ∣  ( ¬  𝑦  ≤  𝑎  ∧  ¬  𝑏  ≤  𝑦 ) } )  | 
						
						
							| 17 | 
							
								16
							 | 
							mpoeq3ia | 
							⊢ ( 𝑎  ∈  ℝ* ,  𝑏  ∈  ℝ*  ↦  { 𝑦  ∈  ℝ*  ∣  ( 𝑎  <  𝑦  ∧  𝑦  <  𝑏 ) } )  =  ( 𝑎  ∈  ℝ* ,  𝑏  ∈  ℝ*  ↦  { 𝑦  ∈  ℝ*  ∣  ( ¬  𝑦  ≤  𝑎  ∧  ¬  𝑏  ≤  𝑦 ) } )  | 
						
						
							| 18 | 
							
								9 17
							 | 
							eqtri | 
							⊢ (,)  =  ( 𝑎  ∈  ℝ* ,  𝑏  ∈  ℝ*  ↦  { 𝑦  ∈  ℝ*  ∣  ( ¬  𝑦  ≤  𝑎  ∧  ¬  𝑏  ≤  𝑦 ) } )  | 
						
						
							| 19 | 
							
								18
							 | 
							rneqi | 
							⊢ ran  (,)  =  ran  ( 𝑎  ∈  ℝ* ,  𝑏  ∈  ℝ*  ↦  { 𝑦  ∈  ℝ*  ∣  ( ¬  𝑦  ≤  𝑎  ∧  ¬  𝑏  ≤  𝑦 ) } )  | 
						
						
							| 20 | 
							
								3 19
							 | 
							eqtri | 
							⊢ 𝐶  =  ran  ( 𝑎  ∈  ℝ* ,  𝑏  ∈  ℝ*  ↦  { 𝑦  ∈  ℝ*  ∣  ( ¬  𝑦  ≤  𝑎  ∧  ¬  𝑏  ≤  𝑦 ) } )  | 
						
						
							| 21 | 
							
								6 7 8 20
							 | 
							ordtbas2 | 
							⊢ (  ≤   ∈   TosetRel   →  ( fi ‘ ( 𝐴  ∪  𝐵 ) )  =  ( ( 𝐴  ∪  𝐵 )  ∪  𝐶 ) )  | 
						
						
							| 22 | 
							
								5 21
							 | 
							ax-mp | 
							⊢ ( fi ‘ ( 𝐴  ∪  𝐵 ) )  =  ( ( 𝐴  ∪  𝐵 )  ∪  𝐶 )  | 
						
						
							| 23 | 
							
								22
							 | 
							fveq2i | 
							⊢ ( topGen ‘ ( fi ‘ ( 𝐴  ∪  𝐵 ) ) )  =  ( topGen ‘ ( ( 𝐴  ∪  𝐵 )  ∪  𝐶 ) )  | 
						
						
							| 24 | 
							
								4 23
							 | 
							eqtri | 
							⊢ ( ordTop ‘  ≤  )  =  ( topGen ‘ ( ( 𝐴  ∪  𝐵 )  ∪  𝐶 ) )  |