Step |
Hyp |
Ref |
Expression |
1 |
|
leordtval.1 |
⊢ 𝐴 = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) |
2 |
|
leordtval.2 |
⊢ 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) |
3 |
|
leordtval.3 |
⊢ 𝐶 = ran (,) |
4 |
1 2
|
leordtval2 |
⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
5 |
|
letsr |
⊢ ≤ ∈ TosetRel |
6 |
|
ledm |
⊢ ℝ* = dom ≤ |
7 |
1
|
leordtvallem1 |
⊢ 𝐴 = ran ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥 } ) |
8 |
1 2
|
leordtvallem2 |
⊢ 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦 } ) |
9 |
|
df-ioo |
⊢ (,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ( 𝑎 < 𝑦 ∧ 𝑦 < 𝑏 ) } ) |
10 |
|
xrltnle |
⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑎 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑎 ) ) |
11 |
10
|
adantlr |
⊢ ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑦 ∈ ℝ* ) → ( 𝑎 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑎 ) ) |
12 |
|
xrltnle |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) → ( 𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦 ) ) |
13 |
12
|
ancoms |
⊢ ( ( 𝑏 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦 ) ) |
14 |
13
|
adantll |
⊢ ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦 ) ) |
15 |
11 14
|
anbi12d |
⊢ ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑎 < 𝑦 ∧ 𝑦 < 𝑏 ) ↔ ( ¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦 ) ) ) |
16 |
15
|
rabbidva |
⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) → { 𝑦 ∈ ℝ* ∣ ( 𝑎 < 𝑦 ∧ 𝑦 < 𝑏 ) } = { 𝑦 ∈ ℝ* ∣ ( ¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦 ) } ) |
17 |
16
|
mpoeq3ia |
⊢ ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ( 𝑎 < 𝑦 ∧ 𝑦 < 𝑏 ) } ) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ( ¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦 ) } ) |
18 |
9 17
|
eqtri |
⊢ (,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ( ¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦 ) } ) |
19 |
18
|
rneqi |
⊢ ran (,) = ran ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ( ¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦 ) } ) |
20 |
3 19
|
eqtri |
⊢ 𝐶 = ran ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ( ¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦 ) } ) |
21 |
6 7 8 20
|
ordtbas2 |
⊢ ( ≤ ∈ TosetRel → ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) |
22 |
5 21
|
ax-mp |
⊢ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) |
23 |
22
|
fveq2i |
⊢ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) = ( topGen ‘ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) |
24 |
4 23
|
eqtri |
⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) |