Metamath Proof Explorer


Theorem leordtval

Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypotheses leordtval.1 𝐴 = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) )
leordtval.2 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) )
leordtval.3 𝐶 = ran (,)
Assertion leordtval ( ordTop ‘ ≤ ) = ( topGen ‘ ( ( 𝐴𝐵 ) ∪ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 leordtval.1 𝐴 = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) )
2 leordtval.2 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) )
3 leordtval.3 𝐶 = ran (,)
4 1 2 leordtval2 ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ( 𝐴𝐵 ) ) )
5 letsr ≤ ∈ TosetRel
6 ledm * = dom ≤
7 1 leordtvallem1 𝐴 = ran ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥 } )
8 1 2 leordtvallem2 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦 } )
9 df-ioo (,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ( 𝑎 < 𝑦𝑦 < 𝑏 ) } )
10 xrltnle ( ( 𝑎 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑎 < 𝑦 ↔ ¬ 𝑦𝑎 ) )
11 10 adantlr ( ( ( 𝑎 ∈ ℝ*𝑏 ∈ ℝ* ) ∧ 𝑦 ∈ ℝ* ) → ( 𝑎 < 𝑦 ↔ ¬ 𝑦𝑎 ) )
12 xrltnle ( ( 𝑦 ∈ ℝ*𝑏 ∈ ℝ* ) → ( 𝑦 < 𝑏 ↔ ¬ 𝑏𝑦 ) )
13 12 ancoms ( ( 𝑏 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑦 < 𝑏 ↔ ¬ 𝑏𝑦 ) )
14 13 adantll ( ( ( 𝑎 ∈ ℝ*𝑏 ∈ ℝ* ) ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 < 𝑏 ↔ ¬ 𝑏𝑦 ) )
15 11 14 anbi12d ( ( ( 𝑎 ∈ ℝ*𝑏 ∈ ℝ* ) ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑎 < 𝑦𝑦 < 𝑏 ) ↔ ( ¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦 ) ) )
16 15 rabbidva ( ( 𝑎 ∈ ℝ*𝑏 ∈ ℝ* ) → { 𝑦 ∈ ℝ* ∣ ( 𝑎 < 𝑦𝑦 < 𝑏 ) } = { 𝑦 ∈ ℝ* ∣ ( ¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦 ) } )
17 16 mpoeq3ia ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ( 𝑎 < 𝑦𝑦 < 𝑏 ) } ) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ( ¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦 ) } )
18 9 17 eqtri (,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ( ¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦 ) } )
19 18 rneqi ran (,) = ran ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ( ¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦 ) } )
20 3 19 eqtri 𝐶 = ran ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ( ¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦 ) } )
21 6 7 8 20 ordtbas2 ( ≤ ∈ TosetRel → ( fi ‘ ( 𝐴𝐵 ) ) = ( ( 𝐴𝐵 ) ∪ 𝐶 ) )
22 5 21 ax-mp ( fi ‘ ( 𝐴𝐵 ) ) = ( ( 𝐴𝐵 ) ∪ 𝐶 )
23 22 fveq2i ( topGen ‘ ( fi ‘ ( 𝐴𝐵 ) ) ) = ( topGen ‘ ( ( 𝐴𝐵 ) ∪ 𝐶 ) )
24 4 23 eqtri ( ordTop ‘ ≤ ) = ( topGen ‘ ( ( 𝐴𝐵 ) ∪ 𝐶 ) )