Step |
Hyp |
Ref |
Expression |
1 |
|
leordtval.1 |
⊢ 𝐴 = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) |
2 |
|
leordtval.2 |
⊢ 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) |
3 |
|
letsr |
⊢ ≤ ∈ TosetRel |
4 |
|
ledm |
⊢ ℝ* = dom ≤ |
5 |
1
|
leordtvallem1 |
⊢ 𝐴 = ran ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥 } ) |
6 |
1 2
|
leordtvallem2 |
⊢ 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦 } ) |
7 |
4 5 6
|
ordtval |
⊢ ( ≤ ∈ TosetRel → ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ( { ℝ* } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) ) |
8 |
3 7
|
ax-mp |
⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ( { ℝ* } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) |
9 |
|
snex |
⊢ { ℝ* } ∈ V |
10 |
|
xrex |
⊢ ℝ* ∈ V |
11 |
10
|
pwex |
⊢ 𝒫 ℝ* ∈ V |
12 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) = ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) |
13 |
|
iocssxr |
⊢ ( 𝑥 (,] +∞ ) ⊆ ℝ* |
14 |
10 13
|
elpwi2 |
⊢ ( 𝑥 (,] +∞ ) ∈ 𝒫 ℝ* |
15 |
14
|
a1i |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 (,] +∞ ) ∈ 𝒫 ℝ* ) |
16 |
12 15
|
fmpti |
⊢ ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) : ℝ* ⟶ 𝒫 ℝ* |
17 |
|
frn |
⊢ ( ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) : ℝ* ⟶ 𝒫 ℝ* → ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ⊆ 𝒫 ℝ* ) |
18 |
16 17
|
ax-mp |
⊢ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ⊆ 𝒫 ℝ* |
19 |
1 18
|
eqsstri |
⊢ 𝐴 ⊆ 𝒫 ℝ* |
20 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) = ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) |
21 |
|
icossxr |
⊢ ( -∞ [,) 𝑥 ) ⊆ ℝ* |
22 |
10 21
|
elpwi2 |
⊢ ( -∞ [,) 𝑥 ) ∈ 𝒫 ℝ* |
23 |
22
|
a1i |
⊢ ( 𝑥 ∈ ℝ* → ( -∞ [,) 𝑥 ) ∈ 𝒫 ℝ* ) |
24 |
20 23
|
fmpti |
⊢ ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) : ℝ* ⟶ 𝒫 ℝ* |
25 |
|
frn |
⊢ ( ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) : ℝ* ⟶ 𝒫 ℝ* → ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ⊆ 𝒫 ℝ* ) |
26 |
24 25
|
ax-mp |
⊢ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ⊆ 𝒫 ℝ* |
27 |
2 26
|
eqsstri |
⊢ 𝐵 ⊆ 𝒫 ℝ* |
28 |
19 27
|
unssi |
⊢ ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 ℝ* |
29 |
11 28
|
ssexi |
⊢ ( 𝐴 ∪ 𝐵 ) ∈ V |
30 |
9 29
|
unex |
⊢ ( { ℝ* } ∪ ( 𝐴 ∪ 𝐵 ) ) ∈ V |
31 |
|
ssun2 |
⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( { ℝ* } ∪ ( 𝐴 ∪ 𝐵 ) ) |
32 |
|
fiss |
⊢ ( ( ( { ℝ* } ∪ ( 𝐴 ∪ 𝐵 ) ) ∈ V ∧ ( 𝐴 ∪ 𝐵 ) ⊆ ( { ℝ* } ∪ ( 𝐴 ∪ 𝐵 ) ) ) → ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( fi ‘ ( { ℝ* } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) |
33 |
30 31 32
|
mp2an |
⊢ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( fi ‘ ( { ℝ* } ∪ ( 𝐴 ∪ 𝐵 ) ) ) |
34 |
|
fvex |
⊢ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ∈ V |
35 |
|
ovex |
⊢ ( 0 (,] +∞ ) ∈ V |
36 |
|
ovex |
⊢ ( -∞ [,) 1 ) ∈ V |
37 |
35 36
|
unipr |
⊢ ∪ { ( 0 (,] +∞ ) , ( -∞ [,) 1 ) } = ( ( 0 (,] +∞ ) ∪ ( -∞ [,) 1 ) ) |
38 |
|
iocssxr |
⊢ ( 0 (,] +∞ ) ⊆ ℝ* |
39 |
|
icossxr |
⊢ ( -∞ [,) 1 ) ⊆ ℝ* |
40 |
38 39
|
unssi |
⊢ ( ( 0 (,] +∞ ) ∪ ( -∞ [,) 1 ) ) ⊆ ℝ* |
41 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
42 |
|
0xr |
⊢ 0 ∈ ℝ* |
43 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
44 |
|
mnflt0 |
⊢ -∞ < 0 |
45 |
|
0lepnf |
⊢ 0 ≤ +∞ |
46 |
|
df-icc |
⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
47 |
|
df-ioc |
⊢ (,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
48 |
|
xrltnle |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 0 < 𝑤 ↔ ¬ 𝑤 ≤ 0 ) ) |
49 |
|
xrletr |
⊢ ( ( 𝑤 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑤 ≤ 0 ∧ 0 ≤ +∞ ) → 𝑤 ≤ +∞ ) ) |
50 |
|
xrlttr |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 < 𝑤 ) → -∞ < 𝑤 ) ) |
51 |
|
xrltle |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( -∞ < 𝑤 → -∞ ≤ 𝑤 ) ) |
52 |
51
|
3adant2 |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( -∞ < 𝑤 → -∞ ≤ 𝑤 ) ) |
53 |
50 52
|
syld |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 < 𝑤 ) → -∞ ≤ 𝑤 ) ) |
54 |
46 47 48 46 49 53
|
ixxun |
⊢ ( ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ < 0 ∧ 0 ≤ +∞ ) ) → ( ( -∞ [,] 0 ) ∪ ( 0 (,] +∞ ) ) = ( -∞ [,] +∞ ) ) |
55 |
44 45 54
|
mpanr12 |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( -∞ [,] 0 ) ∪ ( 0 (,] +∞ ) ) = ( -∞ [,] +∞ ) ) |
56 |
41 42 43 55
|
mp3an |
⊢ ( ( -∞ [,] 0 ) ∪ ( 0 (,] +∞ ) ) = ( -∞ [,] +∞ ) |
57 |
|
1xr |
⊢ 1 ∈ ℝ* |
58 |
|
0lt1 |
⊢ 0 < 1 |
59 |
|
df-ico |
⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
60 |
|
xrlelttr |
⊢ ( ( 𝑤 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( ( 𝑤 ≤ 0 ∧ 0 < 1 ) → 𝑤 < 1 ) ) |
61 |
59 46 60
|
ixxss2 |
⊢ ( ( 1 ∈ ℝ* ∧ 0 < 1 ) → ( -∞ [,] 0 ) ⊆ ( -∞ [,) 1 ) ) |
62 |
57 58 61
|
mp2an |
⊢ ( -∞ [,] 0 ) ⊆ ( -∞ [,) 1 ) |
63 |
|
unss1 |
⊢ ( ( -∞ [,] 0 ) ⊆ ( -∞ [,) 1 ) → ( ( -∞ [,] 0 ) ∪ ( 0 (,] +∞ ) ) ⊆ ( ( -∞ [,) 1 ) ∪ ( 0 (,] +∞ ) ) ) |
64 |
62 63
|
ax-mp |
⊢ ( ( -∞ [,] 0 ) ∪ ( 0 (,] +∞ ) ) ⊆ ( ( -∞ [,) 1 ) ∪ ( 0 (,] +∞ ) ) |
65 |
56 64
|
eqsstrri |
⊢ ( -∞ [,] +∞ ) ⊆ ( ( -∞ [,) 1 ) ∪ ( 0 (,] +∞ ) ) |
66 |
|
iccmax |
⊢ ( -∞ [,] +∞ ) = ℝ* |
67 |
|
uncom |
⊢ ( ( -∞ [,) 1 ) ∪ ( 0 (,] +∞ ) ) = ( ( 0 (,] +∞ ) ∪ ( -∞ [,) 1 ) ) |
68 |
65 66 67
|
3sstr3i |
⊢ ℝ* ⊆ ( ( 0 (,] +∞ ) ∪ ( -∞ [,) 1 ) ) |
69 |
40 68
|
eqssi |
⊢ ( ( 0 (,] +∞ ) ∪ ( -∞ [,) 1 ) ) = ℝ* |
70 |
37 69
|
eqtri |
⊢ ∪ { ( 0 (,] +∞ ) , ( -∞ [,) 1 ) } = ℝ* |
71 |
|
fvex |
⊢ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ V |
72 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
73 |
|
eqid |
⊢ ( 0 (,] +∞ ) = ( 0 (,] +∞ ) |
74 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 (,] +∞ ) = ( 0 (,] +∞ ) ) |
75 |
74
|
rspceeqv |
⊢ ( ( 0 ∈ ℝ* ∧ ( 0 (,] +∞ ) = ( 0 (,] +∞ ) ) → ∃ 𝑥 ∈ ℝ* ( 0 (,] +∞ ) = ( 𝑥 (,] +∞ ) ) |
76 |
42 73 75
|
mp2an |
⊢ ∃ 𝑥 ∈ ℝ* ( 0 (,] +∞ ) = ( 𝑥 (,] +∞ ) |
77 |
|
ovex |
⊢ ( 𝑥 (,] +∞ ) ∈ V |
78 |
12 77
|
elrnmpti |
⊢ ( ( 0 (,] +∞ ) ∈ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ↔ ∃ 𝑥 ∈ ℝ* ( 0 (,] +∞ ) = ( 𝑥 (,] +∞ ) ) |
79 |
76 78
|
mpbir |
⊢ ( 0 (,] +∞ ) ∈ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) |
80 |
79 1
|
eleqtrri |
⊢ ( 0 (,] +∞ ) ∈ 𝐴 |
81 |
72 80
|
sselii |
⊢ ( 0 (,] +∞ ) ∈ ( 𝐴 ∪ 𝐵 ) |
82 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
83 |
|
eqid |
⊢ ( -∞ [,) 1 ) = ( -∞ [,) 1 ) |
84 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( -∞ [,) 𝑥 ) = ( -∞ [,) 1 ) ) |
85 |
84
|
rspceeqv |
⊢ ( ( 1 ∈ ℝ* ∧ ( -∞ [,) 1 ) = ( -∞ [,) 1 ) ) → ∃ 𝑥 ∈ ℝ* ( -∞ [,) 1 ) = ( -∞ [,) 𝑥 ) ) |
86 |
57 83 85
|
mp2an |
⊢ ∃ 𝑥 ∈ ℝ* ( -∞ [,) 1 ) = ( -∞ [,) 𝑥 ) |
87 |
|
ovex |
⊢ ( -∞ [,) 𝑥 ) ∈ V |
88 |
20 87
|
elrnmpti |
⊢ ( ( -∞ [,) 1 ) ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ↔ ∃ 𝑥 ∈ ℝ* ( -∞ [,) 1 ) = ( -∞ [,) 𝑥 ) ) |
89 |
86 88
|
mpbir |
⊢ ( -∞ [,) 1 ) ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) |
90 |
89 2
|
eleqtrri |
⊢ ( -∞ [,) 1 ) ∈ 𝐵 |
91 |
82 90
|
sselii |
⊢ ( -∞ [,) 1 ) ∈ ( 𝐴 ∪ 𝐵 ) |
92 |
|
prssi |
⊢ ( ( ( 0 (,] +∞ ) ∈ ( 𝐴 ∪ 𝐵 ) ∧ ( -∞ [,) 1 ) ∈ ( 𝐴 ∪ 𝐵 ) ) → { ( 0 (,] +∞ ) , ( -∞ [,) 1 ) } ⊆ ( 𝐴 ∪ 𝐵 ) ) |
93 |
81 91 92
|
mp2an |
⊢ { ( 0 (,] +∞ ) , ( -∞ [,) 1 ) } ⊆ ( 𝐴 ∪ 𝐵 ) |
94 |
|
ssfii |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ V → ( 𝐴 ∪ 𝐵 ) ⊆ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
95 |
29 94
|
ax-mp |
⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) |
96 |
93 95
|
sstri |
⊢ { ( 0 (,] +∞ ) , ( -∞ [,) 1 ) } ⊆ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) |
97 |
|
eltg3i |
⊢ ( ( ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ V ∧ { ( 0 (,] +∞ ) , ( -∞ [,) 1 ) } ⊆ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ∪ { ( 0 (,] +∞ ) , ( -∞ [,) 1 ) } ∈ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
98 |
71 96 97
|
mp2an |
⊢ ∪ { ( 0 (,] +∞ ) , ( -∞ [,) 1 ) } ∈ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
99 |
70 98
|
eqeltrri |
⊢ ℝ* ∈ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
100 |
|
snssi |
⊢ ( ℝ* ∈ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) → { ℝ* } ⊆ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
101 |
99 100
|
ax-mp |
⊢ { ℝ* } ⊆ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
102 |
|
bastg |
⊢ ( ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ V → ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
103 |
71 102
|
ax-mp |
⊢ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
104 |
95 103
|
sstri |
⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
105 |
101 104
|
unssi |
⊢ ( { ℝ* } ∪ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
106 |
|
fiss |
⊢ ( ( ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ∈ V ∧ ( { ℝ* } ∪ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) → ( fi ‘ ( { ℝ* } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( fi ‘ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) ) |
107 |
34 105 106
|
mp2an |
⊢ ( fi ‘ ( { ℝ* } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( fi ‘ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
108 |
|
fibas |
⊢ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ TopBases |
109 |
|
tgcl |
⊢ ( ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ TopBases → ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ∈ Top ) |
110 |
|
fitop |
⊢ ( ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ∈ Top → ( fi ‘ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) = ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
111 |
108 109 110
|
mp2b |
⊢ ( fi ‘ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) = ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
112 |
107 111
|
sseqtri |
⊢ ( fi ‘ ( { ℝ* } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
113 |
|
2basgen |
⊢ ( ( ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( fi ‘ ( { ℝ* } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ∧ ( fi ‘ ( { ℝ* } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) → ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) = ( topGen ‘ ( fi ‘ ( { ℝ* } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) ) |
114 |
33 112 113
|
mp2an |
⊢ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) = ( topGen ‘ ( fi ‘ ( { ℝ* } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) |
115 |
8 114
|
eqtr4i |
⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |