Metamath Proof Explorer


Theorem leordtvallem2

Description: Lemma for leordtval . (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypotheses leordtval.1 𝐴 = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) )
leordtval.2 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) )
Assertion leordtvallem2 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦 } )

Proof

Step Hyp Ref Expression
1 leordtval.1 𝐴 = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) )
2 leordtval.2 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) )
3 icossxr ( -∞ [,) 𝑥 ) ⊆ ℝ*
4 sseqin2 ( ( -∞ [,) 𝑥 ) ⊆ ℝ* ↔ ( ℝ* ∩ ( -∞ [,) 𝑥 ) ) = ( -∞ [,) 𝑥 ) )
5 3 4 mpbi ( ℝ* ∩ ( -∞ [,) 𝑥 ) ) = ( -∞ [,) 𝑥 )
6 mnfxr -∞ ∈ ℝ*
7 simpl ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → 𝑥 ∈ ℝ* )
8 elico1 ( ( -∞ ∈ ℝ*𝑥 ∈ ℝ* ) → ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥 ) ) )
9 6 7 8 sylancr ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥 ) ) )
10 simpr ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → 𝑦 ∈ ℝ* )
11 mnfle ( 𝑦 ∈ ℝ* → -∞ ≤ 𝑦 )
12 10 11 jccir ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ) )
13 12 biantrurd ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑦 < 𝑥 ↔ ( ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ) ∧ 𝑦 < 𝑥 ) ) )
14 df-3an ( ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥 ) ↔ ( ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ) ∧ 𝑦 < 𝑥 ) )
15 13 14 bitr4di ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑦 < 𝑥 ↔ ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥 ) ) )
16 xrltnle ( ( 𝑦 ∈ ℝ*𝑥 ∈ ℝ* ) → ( 𝑦 < 𝑥 ↔ ¬ 𝑥𝑦 ) )
17 16 ancoms ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑦 < 𝑥 ↔ ¬ 𝑥𝑦 ) )
18 9 15 17 3bitr2d ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ¬ 𝑥𝑦 ) )
19 18 rabbi2dva ( 𝑥 ∈ ℝ* → ( ℝ* ∩ ( -∞ [,) 𝑥 ) ) = { 𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦 } )
20 5 19 eqtr3id ( 𝑥 ∈ ℝ* → ( -∞ [,) 𝑥 ) = { 𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦 } )
21 20 mpteq2ia ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) = ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦 } )
22 21 rneqi ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) = ran ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦 } )
23 2 22 eqtri 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦 } )