| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrec |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 𝐵 < 𝐴 ↔ ( 1 / 𝐴 ) < ( 1 / 𝐵 ) ) ) |
| 2 |
1
|
ancoms |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐵 < 𝐴 ↔ ( 1 / 𝐴 ) < ( 1 / 𝐵 ) ) ) |
| 3 |
2
|
notbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ¬ 𝐵 < 𝐴 ↔ ¬ ( 1 / 𝐴 ) < ( 1 / 𝐵 ) ) ) |
| 4 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 5 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 6 |
4 5
|
lenltd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
| 7 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < 𝐵 ) |
| 8 |
7
|
gt0ne0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐵 ≠ 0 ) |
| 9 |
5 8
|
rereccld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 1 / 𝐵 ) ∈ ℝ ) |
| 10 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < 𝐴 ) |
| 11 |
10
|
gt0ne0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐴 ≠ 0 ) |
| 12 |
4 11
|
rereccld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| 13 |
9 12
|
lenltd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 1 / 𝐵 ) ≤ ( 1 / 𝐴 ) ↔ ¬ ( 1 / 𝐴 ) < ( 1 / 𝐵 ) ) ) |
| 14 |
3 6 13
|
3bitr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 1 / 𝐵 ) ≤ ( 1 / 𝐴 ) ) ) |