Step |
Hyp |
Ref |
Expression |
1 |
|
gt0ne0 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ≠ 0 ) |
2 |
|
rereccl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 1 / 𝐵 ) ∈ ℝ ) |
3 |
1 2
|
syldan |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 1 / 𝐵 ) ∈ ℝ ) |
4 |
|
recgt0 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 0 < ( 1 / 𝐵 ) ) |
5 |
3 4
|
jca |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( ( 1 / 𝐵 ) ∈ ℝ ∧ 0 < ( 1 / 𝐵 ) ) ) |
6 |
|
lerec |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( ( 1 / 𝐵 ) ∈ ℝ ∧ 0 < ( 1 / 𝐵 ) ) ) → ( 𝐴 ≤ ( 1 / 𝐵 ) ↔ ( 1 / ( 1 / 𝐵 ) ) ≤ ( 1 / 𝐴 ) ) ) |
7 |
5 6
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 ≤ ( 1 / 𝐵 ) ↔ ( 1 / ( 1 / 𝐵 ) ) ≤ ( 1 / 𝐴 ) ) ) |
8 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
9 |
|
recrec |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 1 / ( 1 / 𝐵 ) ) = 𝐵 ) |
10 |
8 1 9
|
syl2an2r |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 1 / ( 1 / 𝐵 ) ) = 𝐵 ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 1 / ( 1 / 𝐵 ) ) = 𝐵 ) |
12 |
11
|
breq1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 1 / ( 1 / 𝐵 ) ) ≤ ( 1 / 𝐴 ) ↔ 𝐵 ≤ ( 1 / 𝐴 ) ) ) |
13 |
7 12
|
bitrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 ≤ ( 1 / 𝐵 ) ↔ 𝐵 ≤ ( 1 / 𝐴 ) ) ) |