Metamath Proof Explorer


Theorem lerec2d

Description: Reciprocal swap in a 'less than or equal to' relation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
rpaddcld.1 ( 𝜑𝐵 ∈ ℝ+ )
lerec2d.2 ( 𝜑𝐴 ≤ ( 1 / 𝐵 ) )
Assertion lerec2d ( 𝜑𝐵 ≤ ( 1 / 𝐴 ) )

Proof

Step Hyp Ref Expression
1 rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
2 rpaddcld.1 ( 𝜑𝐵 ∈ ℝ+ )
3 lerec2d.2 ( 𝜑𝐴 ≤ ( 1 / 𝐵 ) )
4 1 rpregt0d ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) )
5 2 rpregt0d ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) )
6 lerec2 ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 ≤ ( 1 / 𝐵 ) ↔ 𝐵 ≤ ( 1 / 𝐴 ) ) )
7 4 5 6 syl2anc ( 𝜑 → ( 𝐴 ≤ ( 1 / 𝐵 ) ↔ 𝐵 ≤ ( 1 / 𝐴 ) ) )
8 3 7 mpbid ( 𝜑𝐵 ≤ ( 1 / 𝐴 ) )