Description: Reciprocal swap in a 'less than or equal to' relation. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
| rpaddcld.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | ||
| lerec2d.2 | ⊢ ( 𝜑 → 𝐴 ≤ ( 1 / 𝐵 ) ) | ||
| Assertion | lerec2d | ⊢ ( 𝜑 → 𝐵 ≤ ( 1 / 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
| 2 | rpaddcld.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
| 3 | lerec2d.2 | ⊢ ( 𝜑 → 𝐴 ≤ ( 1 / 𝐵 ) ) | |
| 4 | 1 | rpregt0d | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 5 | 2 | rpregt0d | ⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
| 6 | lerec2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 ≤ ( 1 / 𝐵 ) ↔ 𝐵 ≤ ( 1 / 𝐴 ) ) ) | |
| 7 | 4 5 6 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ≤ ( 1 / 𝐵 ) ↔ 𝐵 ≤ ( 1 / 𝐴 ) ) ) |
| 8 | 3 7 | mpbid | ⊢ ( 𝜑 → 𝐵 ≤ ( 1 / 𝐴 ) ) |