Metamath Proof Explorer


Theorem lerecd

Description: The reciprocal of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
rpaddcld.1 ( 𝜑𝐵 ∈ ℝ+ )
Assertion lerecd ( 𝜑 → ( 𝐴𝐵 ↔ ( 1 / 𝐵 ) ≤ ( 1 / 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
2 rpaddcld.1 ( 𝜑𝐵 ∈ ℝ+ )
3 1 rpregt0d ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) )
4 2 rpregt0d ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) )
5 lerec ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴𝐵 ↔ ( 1 / 𝐵 ) ≤ ( 1 / 𝐴 ) ) )
6 3 4 5 syl2anc ( 𝜑 → ( 𝐴𝐵 ↔ ( 1 / 𝐵 ) ≤ ( 1 / 𝐴 ) ) )