Description: The reciprocal of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rpred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
rpaddcld.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | ||
Assertion | lerecd | ⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ( 1 / 𝐵 ) ≤ ( 1 / 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
2 | rpaddcld.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
3 | 1 | rpregt0d | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
4 | 2 | rpregt0d | ⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
5 | lerec | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 1 / 𝐵 ) ≤ ( 1 / 𝐴 ) ) ) | |
6 | 3 4 5 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ( 1 / 𝐵 ) ≤ ( 1 / 𝐴 ) ) ) |