| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑎  =  𝑏  →  ( 𝐴  Xrm  𝑎 )  =  ( 𝐴  Xrm  𝑏 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑎  =  𝑀  →  ( 𝐴  Xrm  𝑎 )  =  ( 𝐴  Xrm  𝑀 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑎  =  𝑁  →  ( 𝐴  Xrm  𝑎 )  =  ( 𝐴  Xrm  𝑁 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							nn0ssre | 
							⊢ ℕ0  ⊆  ℝ  | 
						
						
							| 5 | 
							
								
							 | 
							nn0z | 
							⊢ ( 𝑎  ∈  ℕ0  →  𝑎  ∈  ℤ )  | 
						
						
							| 6 | 
							
								
							 | 
							frmx | 
							⊢  Xrm  : ( ( ℤ≥ ‘ 2 )  ×  ℤ ) ⟶ ℕ0  | 
						
						
							| 7 | 
							
								6
							 | 
							fovcl | 
							⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℤ )  →  ( 𝐴  Xrm  𝑎 )  ∈  ℕ0 )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							sylan2 | 
							⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℕ0 )  →  ( 𝐴  Xrm  𝑎 )  ∈  ℕ0 )  | 
						
						
							| 9 | 
							
								8
							 | 
							nn0red | 
							⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℕ0 )  →  ( 𝐴  Xrm  𝑎 )  ∈  ℝ )  | 
						
						
							| 10 | 
							
								
							 | 
							ltrmxnn0 | 
							⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 )  →  ( 𝑎  <  𝑏  ↔  ( 𝐴  Xrm  𝑎 )  <  ( 𝐴  Xrm  𝑏 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							biimpd | 
							⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 )  →  ( 𝑎  <  𝑏  →  ( 𝐴  Xrm  𝑎 )  <  ( 𝐴  Xrm  𝑏 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							3expb | 
							⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  →  ( 𝑎  <  𝑏  →  ( 𝐴  Xrm  𝑎 )  <  ( 𝐴  Xrm  𝑏 ) ) )  | 
						
						
							| 13 | 
							
								1 2 3 4 9 12
							 | 
							leord1 | 
							⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  ( 𝑀  ≤  𝑁  ↔  ( 𝐴  Xrm  𝑀 )  ≤  ( 𝐴  Xrm  𝑁 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							3impb | 
							⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀  ≤  𝑁  ↔  ( 𝐴  Xrm  𝑀 )  ≤  ( 𝐴  Xrm  𝑁 ) ) )  |