Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐴 Xrm 𝑎 ) = ( 𝐴 Xrm 𝑏 ) ) |
2 |
|
oveq2 |
⊢ ( 𝑎 = 𝑀 → ( 𝐴 Xrm 𝑎 ) = ( 𝐴 Xrm 𝑀 ) ) |
3 |
|
oveq2 |
⊢ ( 𝑎 = 𝑁 → ( 𝐴 Xrm 𝑎 ) = ( 𝐴 Xrm 𝑁 ) ) |
4 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
5 |
|
nn0z |
⊢ ( 𝑎 ∈ ℕ0 → 𝑎 ∈ ℤ ) |
6 |
|
frmx |
⊢ Xrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℕ0 |
7 |
6
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 Xrm 𝑎 ) ∈ ℕ0 ) |
8 |
5 7
|
sylan2 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℕ0 ) → ( 𝐴 Xrm 𝑎 ) ∈ ℕ0 ) |
9 |
8
|
nn0red |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℕ0 ) → ( 𝐴 Xrm 𝑎 ) ∈ ℝ ) |
10 |
|
ltrmxnn0 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 𝑎 < 𝑏 ↔ ( 𝐴 Xrm 𝑎 ) < ( 𝐴 Xrm 𝑏 ) ) ) |
11 |
10
|
biimpd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 𝑎 < 𝑏 → ( 𝐴 Xrm 𝑎 ) < ( 𝐴 Xrm 𝑏 ) ) ) |
12 |
11
|
3expb |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) → ( 𝑎 < 𝑏 → ( 𝐴 Xrm 𝑎 ) < ( 𝐴 Xrm 𝑏 ) ) ) |
13 |
1 2 3 4 9 12
|
leord1 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝐴 Xrm 𝑀 ) ≤ ( 𝐴 Xrm 𝑁 ) ) ) |
14 |
13
|
3impb |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝐴 Xrm 𝑀 ) ≤ ( 𝐴 Xrm 𝑁 ) ) ) |