Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
⊢ ( 𝐵 ∈ ℝ → 0 ∈ ℝ ) |
2 |
|
letri3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 = 0 ↔ ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 0 ↔ ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) ) ) |
4 |
|
ancom |
⊢ ( ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) ↔ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 0 ) ) |
5 |
|
simpr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
6 |
|
0red |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → 0 ∈ ℝ ) |
7 |
|
simpl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
8 |
|
lesub2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 0 ↔ ( 𝐵 − 0 ) ≤ ( 𝐵 − 𝐴 ) ) ) |
9 |
5 6 7 8
|
syl3anc |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐴 ≤ 0 ↔ ( 𝐵 − 0 ) ≤ ( 𝐵 − 𝐴 ) ) ) |
10 |
7
|
recnd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
11 |
10
|
subid1d |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 − 0 ) = 𝐵 ) |
12 |
11
|
breq1d |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐵 − 0 ) ≤ ( 𝐵 − 𝐴 ) ↔ 𝐵 ≤ ( 𝐵 − 𝐴 ) ) ) |
13 |
9 12
|
bitrd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐴 ≤ 0 ↔ 𝐵 ≤ ( 𝐵 − 𝐴 ) ) ) |
14 |
13
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 0 ↔ 𝐵 ≤ ( 𝐵 − 𝐴 ) ) ) |
15 |
14
|
anbi2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 0 ) ↔ ( 0 ≤ 𝐴 ∧ 𝐵 ≤ ( 𝐵 − 𝐴 ) ) ) ) |
16 |
4 15
|
syl5bb |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) ↔ ( 0 ≤ 𝐴 ∧ 𝐵 ≤ ( 𝐵 − 𝐴 ) ) ) ) |
17 |
3 16
|
bitr2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 𝐵 ≤ ( 𝐵 − 𝐴 ) ) ↔ 𝐴 = 0 ) ) |