Metamath Proof Explorer


Theorem lesubadd

Description: 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 17-Nov-2004) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion lesubadd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 𝐶𝐴 ≤ ( 𝐶 + 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℝ )
2 simp2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ )
3 1 2 resubcld ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴𝐵 ) ∈ ℝ )
4 simp3 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ )
5 leadd1 ( ( ( 𝐴𝐵 ) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 𝐶 ↔ ( ( 𝐴𝐵 ) + 𝐵 ) ≤ ( 𝐶 + 𝐵 ) ) )
6 3 4 2 5 syl3anc ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 𝐶 ↔ ( ( 𝐴𝐵 ) + 𝐵 ) ≤ ( 𝐶 + 𝐵 ) ) )
7 1 recnd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℂ )
8 2 recnd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℂ )
9 7 8 npcand ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐵 ) + 𝐵 ) = 𝐴 )
10 9 breq1d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( ( 𝐴𝐵 ) + 𝐵 ) ≤ ( 𝐶 + 𝐵 ) ↔ 𝐴 ≤ ( 𝐶 + 𝐵 ) ) )
11 6 10 bitrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 𝐶𝐴 ≤ ( 𝐶 + 𝐵 ) ) )