Step |
Hyp |
Ref |
Expression |
1 |
|
lesubadd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) ≤ 𝐶 ↔ 𝐴 ≤ ( 𝐶 + 𝐵 ) ) ) |
2 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
3 |
2
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
4 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
5 |
4
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℂ ) |
6 |
3 5
|
addcomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) ) |
7 |
6
|
breq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ ( 𝐵 + 𝐶 ) ↔ 𝐴 ≤ ( 𝐶 + 𝐵 ) ) ) |
8 |
1 7
|
bitr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) ≤ 𝐶 ↔ 𝐴 ≤ ( 𝐵 + 𝐶 ) ) ) |