Metamath Proof Explorer


Theorem lesubadd2

Description: 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 10-Aug-1999)

Ref Expression
Assertion lesubadd2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 𝐶𝐴 ≤ ( 𝐵 + 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 lesubadd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 𝐶𝐴 ≤ ( 𝐶 + 𝐵 ) ) )
2 simp2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ )
3 2 recnd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℂ )
4 simp3 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ )
5 4 recnd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℂ )
6 3 5 addcomd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) )
7 6 breq2d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ ( 𝐵 + 𝐶 ) ↔ 𝐴 ≤ ( 𝐶 + 𝐵 ) ) )
8 1 7 bitr4d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 𝐶𝐴 ≤ ( 𝐵 + 𝐶 ) ) )