Metamath Proof Explorer


Theorem lesubaddi

Description: 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 30-Sep-1999) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Hypotheses lt2.1 𝐴 ∈ ℝ
lt2.2 𝐵 ∈ ℝ
lt2.3 𝐶 ∈ ℝ
Assertion lesubaddi ( ( 𝐴𝐵 ) ≤ 𝐶𝐴 ≤ ( 𝐶 + 𝐵 ) )

Proof

Step Hyp Ref Expression
1 lt2.1 𝐴 ∈ ℝ
2 lt2.2 𝐵 ∈ ℝ
3 lt2.3 𝐶 ∈ ℝ
4 lesubadd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 𝐶𝐴 ≤ ( 𝐶 + 𝐵 ) ) )
5 1 2 3 4 mp3an ( ( 𝐴𝐵 ) ≤ 𝐶𝐴 ≤ ( 𝐶 + 𝐵 ) )