Metamath Proof Explorer


Theorem lesubd

Description: Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 ( 𝜑𝐴 ∈ ℝ )
ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
ltadd1d.3 ( 𝜑𝐶 ∈ ℝ )
lesubd.4 ( 𝜑𝐴 ≤ ( 𝐵𝐶 ) )
Assertion lesubd ( 𝜑𝐶 ≤ ( 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 leidd.1 ( 𝜑𝐴 ∈ ℝ )
2 ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
3 ltadd1d.3 ( 𝜑𝐶 ∈ ℝ )
4 lesubd.4 ( 𝜑𝐴 ≤ ( 𝐵𝐶 ) )
5 lesub ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ ( 𝐵𝐶 ) ↔ 𝐶 ≤ ( 𝐵𝐴 ) ) )
6 1 2 3 5 syl3anc ( 𝜑 → ( 𝐴 ≤ ( 𝐵𝐶 ) ↔ 𝐶 ≤ ( 𝐵𝐴 ) ) )
7 4 6 mpbid ( 𝜑𝐶 ≤ ( 𝐵𝐴 ) )